# You can use "astype" method
# suppose you want to correct your "sales" column data type
df['sales'] = df['sales'].astype('float64')
# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame
# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)
>>> df.astype({'col1': 'int32'}).dtypes
col1 int32
col2 int64
dtype: object